Что такое момент импульса системы тел. Закон сохранения момента импульса: формула, применение и особенности

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Момент импульса относится к фундаментальным, основополагающим законам природы. Он непосредственно связан со свойствами симметрии пространства физического мира, в котором мы все живем. Благодаря закону своего сохранения, момент импульса определяет привычные для нас физические законы перемещения материальных тел в пространстве. Данной величиной характеризуется количество поступательного или вращательного движения.

Момент импульса, также называемый "кинетическим", "угловым" и "орбитальным", является важной характеристикой, зависящей от массы материального тела, особенностей ее распределения относительно воображаемой оси обращения и скорости перемещения. Здесь следует уточнить, что в механике вращение имеет более широкую трактовку. Даже мимо некой произвольно лежащей в пространстве точки можно считать вращательным, принимая ее за воображаемую ось.

Момент импульса и законы его сохранения были сформулированы Рене Декартом применительно к поступательно движущейся системе Правда, о сохранении типа он не упоминал. Лишь столетие спустя Леонардом Эйлером, а затем другим швейцарским ученым, физиком и математиком при изучении вращения материальной системы вокруг неподвижной центральной оси был сделан вывод, что и для такого вида перемещения в пространстве действует данный закон.

Дальнейшие исследования полностью подтвердили, что при отсутствии внешнего воздействия сумма произведения массы всех точек на общую скорость системы и расстояния до центра вращения остается неизменной. Несколько позднее французским ученым Патриком Дарси эти слагаемые были выражены через площади, заметаемые радиус-векторами за одинаковый период времени. Это позволило связать момент импульса материальной точки с некоторыми известными постулатами небесной механики и, в частности, с важнейшим положением о движении планет

Момент импульса твердого тела - третья динамическая переменная, к которой применимы положения фундаментального закона сохранения. Он гласит о том, что независимо от характера и при отсутствии внешнего воздействия данная величина в изолированной материальной системе всегда будет оставаться неизменной. Этот физический показатель может подвергнуться каким-либо изменениям только в случае наличия ненулевого момента воздействующих сил.

Из данного закона также следует, что если М = 0, любое изменение расстояния между телом (системой материальных точек) и центральной осью вращения непременно вызовет увеличение или уменьшение скорости его обращения вокруг центра. Например, гимнастка, выполняющая сальто, чтобы произвести в воздухе несколько оборотов, изначально свертывает свое тело в клубок. А балерины или фигуристки, вращаясь в пируэте, разводят руки в стороны, если хотят замедлить движение, и, наоборот, прижимают их к корпусу, когда стараются кружиться с большей скоростью. Таким образом, в спорте и искусстве используются фундаментальные законы природы.

Пусть дана материальная точка, имеющая импульср . Пусть её положение относительно точки О определяется радиусом-векторомr . Движение такой точки характеризуют моментом импульсаL .

Моментом импульса материальной точки относительно точки О называется векторная величина, равная векторному произведению радиуса-вектораr и вектора импульсаp :

L =[r ,p ].

Модуль момента импульса L =rp sin, где- угол между векторамиr и р . Направление вектора момента импульса определяется по правилу правого винта.

Размерность момента импульса [L ]=кг. м 2 /с.

Момент импульса тела относительно точки равен векторной сумме моментов импульсов частиц тела относительно той же точки

L =L 1 +L 2 +…+L N .

Проекция вектора момента импульса относительно точки О на ось z , проходящую через эту точку, называетсямоментом импульса относительно оси:

L z =[r ,p ] z .

Момент импульса относительно оси является скалярной величиной.

Момент импульса тела относительно оси z равен проекции момента им­пульса тела относительно точки О на осьz , проходящую через эту точку.

4.3. Связь момента силы и момента импульса

Момент импульса и момент силы связаны между собой. Найдём выражение, связывающее их.

Возьмём производную по времени от выражения, определяющего момент импульса:

Член
равен нулю, так как угол между вектором скоростиd r /dt и вектором импульсар равен нулю.

Производная импульса по времени, имеющаяся во втором члене полу­ченного выражения, равна силе (второй закон Ньютона). Поэтому можем запи­сать полученное выражение в следующей форме:

.

Но [r ,F ] есть по определению момент силыF относительно той же точки О. Поэтому

т.е. скорость изменения момента импульса частицы равнамоменту силы, действующему на эту частицу.

Проекция последнего уравнения на ось z выражает связь момента им­пульса относительно осиz и момента силы относительно той же оси.

.

4.4. Основной закон динамики вращательного движения

Пусть твёрдое тело вращается относительно неподвижной оси z .

Выразим момент импульса твёрдого тела относительно оси вращения. Для этого представим твёрдое тело как совокупность элементарных масс. Момент импульса одной элементарной массы относительно осиz

Момент импульса всего тела равен сумме моментов импульсов всех эле­ментарных масс

Скорость v у разных элементарных масс различна, а угловая скорость одинакова.

Поскольку v =r ,

Поскольку угловая скорость со одинакова для всех элементарных масс, её можно вынести за знак суммы

Введём обозначение
. С учётом этого

L z =J z . .

Ранее мы получили, что момент импульса и момент силы связаны сле­дующим образом:

.

Заменив L z наJ z ωи с учётом того, чтоJ z с течением времени не изменяется, получаем

Учитывая, что производная угловой скорости по времени равна угловому ускорению , получаем

.

Полученное выражение - основной закон динамики вращательного движения, связывающий между собой меру внешнего воздействия - момент силы M z с результатом внешнего воздействия - угловым ускорением.

Коэффициент J z , стоящий в этом уравнении, зависит от массы тела и от то­го, как она распределена по объёму тела (это видно из определения величиныJ z ).

Чем меньше J z , тем большее угловое ускорение получит тело при воздей­ствии момента силыM z . Это говорит о том, что коэффициентJ z . характеризует инертность вращающегося тела. ПоэтомуJ z называют моментом инерции тела относительно осиz .

Знание величины момента инерции тела необходимо для описания враща­тельного движения. Поэтому обсудим более подробно, что такое момент инер­ции и как его вычислить.

Момент импульса тела относительно неподвижной оси вращения

Определение

Момент импульса - векторная физическая величина характеризующая импульс, численно равная векторному произведению
Момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.
Момент импульса замкнутой системы сохраняется.
Эта величина называется моментом импульса относительно оси.

Закон сохранения момента импульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем. В упрощённом виде: , если система находится в равновесии.

Сначала дадим определение изотропности , чтобы продвинуться далее в изучении.

Изотропность — одно из ключевых свойств пространства в классической механике. Пространство называется изотропным, если поворот системы отсчета на произвольный угол не приведет к изменению результатов измерений.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.
Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства - его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.

Пример

Справедливость закона сохранения момента импульса относительно неподвижной оси вращения можно продемонстрировать на опыте со скамьей Жуковского. Скамьей Жуковского называется горизонтальная площадка, свободно вращающаяся без трения вокруг неподвижной вертикальной оси. Человек, стоящий или сидящий на скамье, держит в вытянутых руках гимнастические гантели и приводится во вращение вместе со скамьей вокруг оси с угловой скоростью ω1 . Приближая гантели к себе, человек уменьшает момент инерции системы, а так как момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость ее вращения ω2 возрастает.

(кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Момент импульса материальной точки относительно точки O определяется векторным произведением
, где — радиус-вектор, проведенный из точки O, — импульс материальной точки.
Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z .

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется () :
.

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:
.

Закон сохранения момента импульса : момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени.
Это один из фундаментальных законов природы.

Аналогично для замкнутой системы тел, вращающихся вокруг оси z :

Отсюда или .

Если момент внешних сил относительно неподвижной оси вращения тождественно равен нулю, то момент импульса относительно этой оси не изменяется в процессе движения.
Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.

Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке (уравнение 4.8), и состоит в следующем:

Если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.

Действительно, если M = 0, то dL / dt = 0 , откуда

(4.14)

Другими словами, момент импульса замкнутой системы с течением времени не изменяется.
Из основного закона динамики тела, вращающегося вокруг неподвижной оси z (уравнение 4.13), следует закон сохранения момента импульса тела относительно оси :

Если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения, т.е. если M z = 0, то dL z / dt = 0, откуда


Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства - его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.

Изменение импульса материальной точки вызывается действием на нее силы.

Умножая уравнение (1.7) слева векторно на радиус-вектор , Получаем

Где вектор называется Моментом импульса материальной точки , а вектор — Моментом силы. Изменение момента импульса материальной точки вызывается моментом действующей на нее силы.

Несколько тел, каждое из которых можно рассматривать как материальную точку, составляют Систему материальных точек . Для каждой материальной точки можно записать уравнение вто-рого закона Ньютона

(1.13)

В уравнении (1.13) индексы дают номер материальной точки. Действующие на материальную точку силы разделены на внеш-ние и внутренние . Внешние силы — это силы, действующие со стороны тел, не входящих в систему материальных точек. Вну-тренние силы — это силы, действующие на материальную точку со стороны других тел, составляющих систему материальных точек. Здесь — сила, действующая на материальную точку, индекс которой , со стороны материальной точки с номером .

Из уравнений (1.13) вытекают несколько важных законов. Если просуммируем их по всем материальным точкам системы, то по-лучим

(1.14) ,

Величина (1.15)

Называется Импульсом системы материальных точек. Импульс системы материальных точек равен сумме импульсов отдельных материальных точек. В уравнении (1.14) двойная сумма для вну-тренних сил обращается в нуль. Для каждой пары материальных точек в нее входят силы, которые по третьему закону Ньютона равны и противоположно направлены. Для каждой пары вектор-ная сумма этих сил обращается в нуль. Поэтому равна нулю и сумма для всех сил.

В результате получим:

(1.16)

Уравнение (1.16) выражает закон изменения импульса системы материальных точек. Изменение импульса системы материальных точек вызывается только внешними силами. Если на систему не действуют внешние силы, то импульс системы материальных то-чек сохраняется. Систему материальных точек, на которую не действуют внешние силы, называют Изолированной, или замкну-той, системой материальных точек.

Аналогичным образом для каждой материальной точки запи-сываются уравнения (1.8) моментов импульсов

(1.17)

При суммировании уравнений (1.17) по всем материальным точ-кам системы материальных точек сумма моментов внутренних сил обращается в нуль и получается Закон изменения момента импуль-са системы материальных точек :

(1.18)

Где введены обозначения: — момент импульса системы мате-риальных точек, — момент внешних сил. Изменение момен-та импульса системы материальных точек вызывается внешними силами, действующими на систему. Для замкнутой системы мате-риальных точек момент импульса сохраняется

.

Вектор, равный векторному произведению радиус-вектора на силу,
называется моментом силы .

Аналогично моменту силы определяется момент импульса (момент количества движения) материальной точки

Аналогично моменту силы определяется момент импульса (момент количества движения) материальной точки. Момент импульса относительно точки О равен

Моментом импульса относительно оси z называется составляющая L z по этой оси момента импульса L относительно точки О, лежащей на оси (рис. 97):

где R - составляющая радиуса-вектора r , перпендикулярная к оси z , а p τ - составляющая вектора р, перпендикулярная к плоскости, проходящей через ось z и точку m .

Выясним, чем определяется изменение момента импульса со временем. Для этого продифференцируем (37.1) по времени t , воспользовавшись правилом дифференцирования произведения:

(3 7.5 )

Первое слагаемое равно нулю, так как оно представляет собой векторное произведение векторов одинакового направления. В самом деле, вектор равен вектору скорости v и, следовательно, совпадает по направлению с вектором р=mv. Вектор по второму закону Ньютона равен действующей на тело силе f [см. (22.3)]. Следовательно, выражение (37.5) можно написать так:

(3 7.6 )

где М - момент приложенных к материальной точке сил, взятый относительно той же точки О, относительно которой берется момент импульса L.

Из соотношения (37.6) следует, что если результирующий момент действующих на материальную точку сил относительно какой-либо точки О равен нулю, то момент импульса материальной точки, взятый относительно той же точки О будет оставаться постоянным.

Взяв составляющие по оси z от векторов, входящих в формулу (37.6), получим выражение :

(3 7.7 )

Формула (37.6) похожа на формулу (22.3). Из сравнения этих формул вытекает, что подобно тому, как производная по времени от импульса равна силе, действующей на материальную точку, производная по времени от момента импульса равна моменту силы.

Рассмотрим несколько примеров.

Пример 1. Пусть материальная точка m движется вдоль пунктирной прямой на рис.96. Поскольку движение прямолинейно, импульс материальной точки изменяется только по модулю, причем

где f - модуль силы [в рассматриваемом случае f имеет такое же направление, как р (см. рис. 96), так что ].

Плечо t остается неизменным. Следовательно,

что согласуется с формулой (37.6) (в данном случае L изменяется только по модулю, причем увеличивается, поэтому ).

Пример 2. Материальная точка массы m движется по окружности радиуса R (рис. 98).

Момент импульса материальной точки относительно центра окружности О равен по модулю:

L=mυR

(3 7.8 )

Вектор L перпендикулярен к плоскости окружности, причем направление движения точки и вектор L образуют правовинтовую систему.

Поскольку плечо, равное R, остается постоянным, момент импульса может изменяться только за счет изменения модуля скорости. При равномерном движении материальной точки по окружности момент импульса остается постоянным и по величине и по направлению. Легко сообразить, что в этом случае момент силы, действующей на материальную точку, равен нулю.

Пример 3. Рассмотрим движение материальной точки в центральном поле сил (см. § 26). В соответствии с (37.6) момент импульса материальной точки, взятый относительно центра сил, должен оставаться постоянным по величине и направлению (момент центральной силы относительно центра равен нулю). Радиус-вектор r , проведенный из центра сил в точку m , и вектор L перпендикулярны друг к другу. Поэтому вектор r остается все время в одной и той же плоскости, перпендикулярной к направлению L. Следовательно, движение материальной точки в центральном поле сил будет происходить по кривой, лежащей в плоскости, проходящей через центр сил.

В зависимости от знака центральных сил (т. е. от того, являются они силами притяжения или отталкивания), а также от начальных условий траектория представляет собой гиперболу, параболу или эллипс (в частности, окружность). Например, Земля движется по эллиптической орбите, в одном из фокусов которой помещается Солнце.

Закон сохранения момента импульса. Рассмотрим систему из N материальных точек. Подобно тому, как это делалось в §23, разобьем силы, действующие на точки, на внутренние и внешние. Результирующий момент внутренних сил, действующих на i-ю материальную точку, обозначим символом , результирующий момент внешних сил, действующих на ту же точку, - символом М i . Тогда уравнение (37.6) для i-й материальной точки будет иметь вид:

(i=1, 2,…, N)

Это выражение представляет собой совокупность N уравнений, отличающихся друг от друга значениями индекса i . Сложив эти уравнения, получим:

называется моментом импульса системы материальных точек.

Сумма моментов внутренних сил [первая из сумм в правой части формулы (37.9)], как было показано в конце §36, равна нулю. Следовательно, обозначив суммарный момент внешних сил символом М, можно написать, что

(3 7.11 )

[в символы L и М в этой формуле вложен иной смысл, чем в такие же символы в формуле (37.6)].

Для замкнутой системы материальных точек М=0, вследствие чего суммарный момент импульса L не зависит от времени. Таким образом, мы пришли к закону сохранения момента импульса: момент импульса замкнутой системы материальных точек остается постоянным.

Отметим, что момент импульса остается постоянным и для системы, подвергающейся внешним воздействиям, при условии, что суммарный момент внешних сил, действующих на тела системы, равен нулю.

Взяв от векторов, стоящих в левой и правой частях уравнения (37.11), их составляющие по оси z , придем к соотношению:

(3 7.12 )

Может случиться, что результирующий момент внешних сил относительно точки О отличен от нуля (М≠0), однако равна нулю составляющая М z вектора М по некоторому направлению z . Тогда согласно (37.12) будет сохраняться составляющая L z момента импульса системы по оси z .

Согласно формуле (2.1 1)

где -проекция на ось z вектора , а L z - проекция на ось z вектора L. Умножим обе части равенства на орт e z оси z и, учтя, что e z от t не зависит, внесем его в правой части под знак производной. В результате получим:

Но произведение e z на проекцию вектора на ось z дает составляющую этого вектора по оси z (см. сноску на стр. 132). Следовательно,

где - составляющая пo оси z вектора .

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Толкование сна обрезать в сонниках Толкование сна обрезать в сонниках Сонник: кабачки на грядке, круглый кабачок, собирать кабачки Сонник: кабачки на грядке, круглый кабачок, собирать кабачки Черви: к чему снится сон Черви: к чему снится сон